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Abstract

This project aimed to enhance tomato growth prediction and optimize fertil-
izer use through the development of a k-NN model.The primary objective was
to develop a K-Nearest Neighbors model to forecast tomato plant growth ,
specifically in the context of Zimbabwean agriculture. Additionally, the project
sought to deploy this model in a user-friendly interface and apply optimization
techniques to provide real-time fertilizer recommendations based on current soil
conditions.Background research highlighted the critical role of variables such as
nitrogen, phosphorus, potassium , temperature, soil moisture, and humidity in
influencing tomato growth. Comprehensive data collection from reliable sources
ensured these variables were well-represented in the dataset.The research was
aimed at bridging the gap between assumed knowledge and data-driven insights
based on experimental research.The optimized k-NN model was integrated into
a user-friendly interface, allowing farmers to input current conditions and re-
ceive real-time predictions and fertilizer recommendations. hyper-parameter
tuning was employed to optimize performance, ensuring accuracy and reliabil-
ity. This practical application aimed to support better crop management and
yield optimization. The integration of real-time NPK readings into the model
provided actionable insights for farmers, enhancing the practical utility of the
system.Key outcomes included the robust performance of the k-NN model for
both height and fruit number after optimization using Random Search tech-
nique. The project successfully demonstrated the ability to provide optimized
fertilizer recommendations, leading to improved growth rates and favorable out-
comes in real-world applications.In conclusion, this project successfully devel-
oped and deployed a predictive modeling system that can significantly enhance
tomato growth and optimize agricultural practices. By providing farmers with
accessible and accurate tools for crop management, the project contributes to
the broader goal of sustainable and efficient agriculture. Future work will focus
on expanding the dataset, validating the models in diverse environments, and
re-running the k-NN model with other optimization techniques for the growth
metrics of the following week, and/or for the growth rate of the tomato plant.
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Chapter 1

Introduction

1.1 Introduction

Crop growth prediction is a crucial aspect of precision agriculture, enabling
farmers to optimize resource allocation and maximize crop yields.k-nearest neigh-
bors (k-NN), a versatile machine learning algorithm, proved to be a promising
tool for prediction of crop growth due to its simplicity, effectiveness, and capabil-
ity to manage diverse data types. This research aims to investigate the applica-
tion of k-NN for tomato crop growth prediction taking into account the nutrient
and water requirements of the tomato crop.By analysing historical data on en-
vironmental conditions, soil properties, and cultivation practices, the researcher
aims to train a predictive model capable of estimating tomato growth based on
key input variables . The resulting model will serve as a valuable tool for farm-
ers to make informed decisions regarding irrigation, application of fertilizers,
and other critical management practices. The proposed research involves sev-
eral essential steps in the machine learning pipeline. Through exploratory data
analysis (EDA) and feature engineering, the researcher will extract meaningful
features and identify key factors affecting tomato crop growth.The researcher
will develop a predictive model that accurately forecasts nutrient uptake and
tomato growth based on historical sensor data and plant growth parameters.
Using k-NN, the model will provide valuable insights to farmers, enabling them
to make data-driven decisions concerning resource allocation and fertilizer ap-
plication. Most modern day farmers assume the ideal conditions for growth rate
of the tomato plant based on generational knowledge.Whilst this generational
knowledge is valuable in many cases, in a complex multi-dimensional system,
a data-based approach can provide values that are more custom to particular
scenarios. The research aims to predict growth of the tomato plant using plant
height and fruit number as the measurement metrics based on inputs such as
nitrogen, phosphorus, potassium, temperature , humidity and soil moisture.
This can then be used to find ideal values for controllable inputs based on the
value of the other inputs. The research will complement the already existing
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smart greenhouses which will contain multiple sensors which will be used for
data collection.

1.2 Background of the study

Crop growth [8] refers to the process by which agricultural crops develop and
mature over time. It could also be defined [21] as the irreversible increase in
size, while development involves the ongoing changes in plant form and function,
marked by distinct transitional phases. It involves various physiological and
biochemical changes, such as germination, vegetative growth, flowering, and
fruiting. In the context of tomatoes, height measured over a period of time can
be used as a metric for growth rate. However it is imperative to factor in the fruit
number and the relationship with plant height. Vegetative parameters such as
leaf area, stem length, fresh weight, and stem diameter can be used to assess the
growth rate of tomato plants. [2]. The tomato plant is a widely cultivated crop,
known for their economic importance and nutritional value. Understanding the
growth patterns and factors affecting tomato plants is crucial for optimizing
growth rate, quality yields and overall crop productivity.

Crop growth is important to agriculture because it is the foundation of food
production.The research will be designed carefully to be in line with UN Sus-
tainable development goals addressing several of them some of which include
SDGs 2, 12 and 13. The research’s focus on increasing food production effi-
ciency, reducing water use, and improving crop quality aligns with Zero Hunger,
Responsible Consumption and Production SDGs. Additionally, the research’s
focus on reducing the environmental impact of agriculture aligns with Climate
Action SDG. Addressing these goals will create a significant positive impact on
both the environment and society.

A number of researches have been done for prediction of crop growth rate in
tomatoes as well as other plants, a number of them being implemented in the
hydroponics farming techniques. A number of researches have been done on
tomatoes, some highlighting the important inputs for optimization of tomato
growth rate [13] while some emphasized the importance of nitrogen based fertil-
izers as well as good irrigation schedules for improved growth [29]. Researchers
have been been successful implementing ANN for prediction of tomato growth
and yield [29]. [16] proposed a system that implements k-NN Algorithm to
predict the absolute crop growth of leafy vegetables in a greenhouse using hy-
droponics farming techniques. k-NN was shown to be accurate on hydroponics
farming of leafy vegetables. [6] focused on the use of different machine learning
algorithms on different crops in nutrient management. k-NN was shown to be
accurate for nutrient management on potatoes. k-NN was also researched for
disease detection [7] and crop selection prediction [11]. k-Nearest Neighbors is
a machine learning algorithm that has been successfully applied in crop-related
studies. k-NN can be used as a classifier or as a regressor and this research will
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make use of its regression capabilities. k-NN has been of use in crop machine
learning in tasks such as crop yield prediction [27], disease prediction [23] as
well as crop growth rate as well as yield of leafy vegetables in hydroponics as
mentioned above.

[25] proposed the use of plant height and vegetable index maps to measure
the growth rate of the tomato for use in prediction of the crop yield. Besides
the evidence that k-NN is an effective algorithm in the agricultural prediction,
it has also been used to predict the growth rate of other crops such as corn
and soy beans. There are various reasons why k-NN is the proposed machine
learning algorithm for use in the research. Some of these reasons include:

• Non-linearity: k-NN works very well with data that does not follow a
linear approach. Tomato growth rate is a non-linear parameter which will
not follow a linear relationship thus k-NN is best suited for its prediction.

• Proximity-based Approach: k-NN uses the concept of proximity to make
predictions, making it suitable for predicting plant growth because neigh-
bouring plants often exhibit similar growth patterns under similar con-
ditions. This is consistent with the assumption that neighbouring plants
respond together to environmental factors and management practices.

The proposed model seeks to enhance traditional greenhouse management. By
implementing this research, farmers will have access to a user-friendly interface
where they get actionable insights, in order to make informed decisions, optimize
plant growth and reduce resource consumption.

1.3 Problem definition

Most modern day farmers assume the ideal conditions for growth rate of the
tomato plant based on generational knowledge.Whilst this generational knowl-
edge is valuable in many cases, in a complex multi-dimensional system, a data-
based approach can provide values that are more custom to particular scenarios.
The aim of the research is to predict growth rate of the tomato plant using the
plant height(cm/week) and fruit number per week based on the following input
parameters: nitrogen, phosphorus, potassium, temperature , humidity, ph and
soil moisture.This can then be used to find ideal values for controllable inputs
based on the value of the other inputs using the k-NN algorithm.

Technically speaking, the researcher’s aim is to minimize error between the
predicted values and real outcomes by finding appropriate cluster sizes (k).

L(f, k) =
1

P

p∑
p=1

(ŷ − f(xp, k))
2 (1.1)

The k-NN model considers the parameters which include soil moisture, pH, hu-
midity, temperature, and nitrogen-phosphorous-potassium levels (NPK). Based
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on the below equation; i (row) and j (column) are positions of the scalar in a
matrix first row first column. These will be used as the feature data for the
model,

X = x11x12....x1px21x22x2pxp1xp2.....xpp(1.2)

1.4 Aim

To develop a k-nn model to predict growth of the tomato plant using fruit
number and plant height as measurement metrics against controllable and un-
controllable inputs and in turn maximize yield by manipulating the controllable
inputs.

1.5 Objectives

• Develop and train a model using the k-NN Algorithm to predict growth
of tomato plant used in a Zimbabwean Context.

• Deploy the k-NN model to a user-friendly interface where farmers can
manipulate controllable inputs.

• To apply optimization on the model for recommendation of optimal values
for controllable inputs to maximize plant growth.

1.6 Scope and limitations of the project

1.6.1 Scope

Development of Predictive Model: This research will focus on the development
of a k-NN predictive model specifically designed to predict the growth rate of
tomatoes.

Data Inputs: The model will be trained on data including:

• Plant characteristics(outputs of model): height and fruit number

• Growth-influencing metrics(inputs of model):

• Soil chemistry: Nitrogen (N), Phosphorus (P), Potassium (K) levels

• Environmental factors: Temperature, Soil Moisture, pH, and Humidity

Model Training and Validation: The k-NN model will be trained using historic
data and validated using collected data from an experimental set-up to ensure
accuracy and reliability in tomato growth rate predictions.

Application : The outcomes of this research are intended to assist farmers and
agricultural professionals in optimizing growth conditions and improving crop
yield through data-driven insights.
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1.6.2 Delimitations and Limitations of the research

The research focuses on a variety of tomatoes called Solanaceae . Different
tomato varieties may respond differently to environmental factors, and the re-
sults that will be yielded from this research may not generalize to all tomato
cultivars.

The inputs which are considered for the research are pH, EC , NPK, humid-
ity, temperature. There are other relevant inputs which can be considered for
tomato crop growth rate such carbon dioxide CO2 and light intensity.

The performance of the predictive model largely relies on the quality and com-
pleteness of the data collected. Any shortcomings or discrepancies within the
data may affect the precision of the model.

Training and validation of the k-NN model, particularly with large datasets, can
be computationally intensive and may require significant processing power and
time.

1.7 Feasibility Analysis

1.7.1 Technical Feasibility

The project uses open-source platforms to develop the model which is accessible
to the researcher. Data from Total Solution greenhouse farmers will be used to
validate the k-NN model.Infra-red sensor, NPK sensor and Soil moisture sensor.
Humidity sensor will be put across about 20m2 of tomatoes running for 3 months
and this is feasible as the same sensors will be used for the period of time the
data is collected from the greenhouse. The soil moisture sensors will be placed on
different tomato crops and data will be collected on the edge to ensure accurate
collection of data.

According to [22] define that technical feasibility posing a question are the
technical resources available to implement the proposed system. The technical
feasibility of this research addresses the question asked in the paper above as
stated below:

• The researcher posses the necessary technical expertise.

• The researcher has access to the necessary technology.

• The researcher has access to the data set which will be used for training
and has access to Total Solutions farm greenhouse where data will be
collected from for validation to make it generalized to the Zimbabwean
context.
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Item Quantity Cost
ESP32 1 50

GSM Module for broadcasting communication 1 70
Infra-red sensor 1 20
NPK sensor 1 180
pH sensor 1 25

Soil Moisture sensor 3 300
Humidity Sensor 1 15

Data sets and travel to greenhouse 1 30

Table 1.1: Budget

1.7.2 Economical Feasibility

a) Cost of Sensors and Equipment: The cost of purchasing and installing the
required sensors and related equipment will be sourced from the researcher’s
funds with support from family therefore the choice of components is made
economically.

b) Operational Costs: The facilities that the research will be using are al-
ready operational and self-funded, and using them does not increase any oper-
ational burden that would require compensation.

1.8 Justification and rationale

Being able to predict the crop growth based on controllable variables of the
growing would lead to higher yield efficiency and the following important as-
pects:

• Precision Resource Management: The development of the k-NN predic-
tive model that estimates nutrient uptake, water requirements, and growth
rate provides farmers with valuable insights into crop health and resource
needs. This information enables precise resource management, such as
tailored watering schedules and fertilizer applications. By optimizing re-
source usage, farmers can minimize waste, reduce costs, and promote sus-
tainable agricultural practices.

• Informed Decision-Making: The research’s focus on providing a system
that provides actionable recommendations and graphical representations
of growth rate empowers farmers to make informed decisions regarding
crop management. By visualizing growth patterns over time, farmers can
identify trends, compare growth rates, and detect any abnormal growth
behaviours. This information helps farmers adjust their cultivation strate-
gies, identify nutrient deficiencies or excesses, and optimize the growth of
tomatoes.

Overall, the research is important because it has the potential to enhance envi-
ronmental monitoring, optimize resource management, enable informed decision-
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making and promote sustainable and productive greenhouse farming practices.
By leveraging sensor integration and predictive modelling, the project offers a
comprehensive solution that empowers farmers with insights and tools to op-
timize their operations and achieve better agricultural outcomes. Significance
to the researcher The researcher will benefit through acquiring an in-depth un-
derstanding of designing, developing, deploying and maintaining the above de-
scribed system. The researcher will also boost their knowledge on best IT sys-
tems design practises and current solutions that are the epicentre of delivering
excellent engineered IT products and services. This research project will also
provide the researcher with practical experience through interaction with the
various components that constitute the system.

1.9 Work Plan

Figure 1.1: Project Timeline
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1.10 Conclusion

This chapter introduces and explores the application of k-NN as a regressor for
tomato crop growth prediction taking ph, soil moisture, temperature, humid-
ity, NPK as input parameters. By leveraging the machine learning technique
and analysing relevant data sources, the researcher sought to provide valuable
insights for farmers to make informed decisions and enhance tomato crop pro-
ductivity. A feasibility study was used to assess if the goal of the project would
be attainable. It was determined that the necessary technical resources, in-
cluding data sources, pre-processing techniques, and the k-NN algorithm, are
available and suitable for the project‘s objectives. The feasibility study also
highlighted the potential benefits, such as optimized agricultural practices and
increased crop yields, which contribute to the economic viability of the project.

Considering nutrient management, soil data and nutrient levels are important
input variables in the k-NN predictive model. By analysing the relationship be-
tween nutrient levels and tomato crop growth, the model can assist farmers in
recommending optimal nutrient application rates, ensuring balanced nutrition
for the crop, and mitigating nutrient deficiencies or excesses that can hinder
growth. Water requirements are crucial for tomato crop growth, and this re-
search recognizes the significance of considering that. By utilizing climate and
weather data, variables such as rainfall, humidity, and evapo-transpiration rates
will be incorporated into the predictive model. This enables farmers to opti-
mize irrigation strategies, ensuring that water is applied efficiently, minimizing
wastage, and preventing both water shortage and water logging issues that can
impact tomato crop growth.The integration of nutrient management and water
requirements into the predictive model will enhance practical utility. By ac-
counting for these factors, farmers can make well-informed decisions regarding
fertilization and irrigation practices, promoting sustainable resource manage-
ment and improving overall crop performance.

In conclusion, the application of k-NN as a regressor for tomato crop growth
prediction as well providing recommendations for best fertilizer application
schedules and irrigation schedules will be significant in the agricultural sector.
The research project provides valuable insights to farmers so that they make
data-driven decisions. Ultimately, this contributes to sustainable agriculture by
improving crop growth and yield and resource-efficient farming practices.
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Chapter 2

Literature Review

2.1 Review Relevant Research

2.1.1 Machine learning based crop growth management in
greenhouse environment using hydroponics farming
techniques

V.Mamatha et al 2023 [16] proposed a system that implements k-NN as a clas-
sifier to predict the absolute crop growth of leafy vegetables in a greenhouse
using hydroponics farming techniques. In the research, the entire greenhouse is
considered for crop plantation. Environmental factors such as water, tempera-
ture, air, total dissolved solid (TDS), pH, humidity, and light conditions inside
the greenhouse will have a direct impact on the growth of plants. The data
values that are collected from different growth substrate shows different accura-
cies when it is implemented using k-NN. The use of k-NN algorithm along with
Nutrient Film Technique (NFT) technique produces an accuracy of 93% in the
prediction of crop growth. In this proposed system of research, the experiments
are carried out only on leafy vegetables which are hydroponically grown and
future work can be done on fruits.

2.1.2 Improving the CROPGRO-Tomato Model for Pre-
dicting Growth and Yield Response to Temperature

The primary goal of the study [4] is to enhance the CROPGRO-tomato model,
a tool used to predict tomato growth and yield, by improving its ability to ac-
count for temperature variations. The model was re-calibrated and evaluated
using 10 datasets from field experiments in Florida from 1991 to 2007. Re-
sults showed that the modified parameters significantly improved the model’s
accuracy in predicting crop and fruit dry matter accumulation, with reductions
in root mean square error (RMSE) of 44% for leaf area index, 71% for fruit
number, and 36% for both aboveground biomass and fruit dry weight. The
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Willmott d index, measuring model performance, consistently exceeded 0.92.
The study highlighted the significant impact of temperature on tomato growth,
suggesting future research could explore how temperature interacts with other
input variables and how they affect tomato growth especially in the greenhouse
context.

2.1.3 A machine learning approach for prediction system
and analysis of nutrients uptake for better crop growth
in the Hydroponics system

This paper [28] proposes a framework for predicting the absolute crop growth
rate (CGR) in hydroponic tomato crops using machine learning. Key input
variables include electric conductivity (EC) limits, nutrient solution (NS), ion
concentration uptake, and the dry weight of the fruits. The study examines the
correlations between these variables and the absolute CGR. It highlights the
impact of nutrient ion uptake (Na, K, Mg, N, and Ca) on growth. The corre-
lation analysis identifies critical factors influencing CGR, aiding in optimizing
nutrient supply for better crop growth. The proposed system offers a smart
and efficient method for predicting CGR and achieving high-quality yields by
estimating essential parameter values. While the current approach focuses on
predicting absolute CGR, future research could explore additional metrics like
dry weight matter and relative growth rate, as well as more detailed nutrient
uptake analysis.

2.1.4 Growth analysis of tomato plants in controlled green-
houses

The research [3]The research analyzed various vegetative and yield parameters
of tomato plants, including leaf area, stem length, fresh and dry weights of leaves
and stems, and stem diameter, measured at 14-day intervals. Additionally, fruit
traits such as fruit length, diameter, fresh weight, number, and total yield were
recorded at each harvest. Plant growth indices such as leaf area index (LAI),
leaf area duration (LAD), leaf weight ratio (LWR), stem weight ratio (SWR),
fruit weight ratio (FWR), specific leaf area (SLA), leaf area ratio (LAR), net
assimilation rate (NAR), relative growth rate (RGR), and crop growth rate
(CGR) were calculated. Climatic data, including humidity and temperature
inside greenhouses, were recorded to investigate their relationship with other
controllable variables affecting tomato plant growth.The study does not employ
machine learning or predictive modeling techniques to integrate the collected
data and forecast growth outcomes.While climatic data such as humidity and
temperature were recorded, their integration with other growth parameters for
predictive analytics was not fully explored.The research did not focus on opti-
mizing controllable inputs (e.g., nutrient levels, water supply) to enhance growth
and yield based on the collected data.
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2.1.5 Growth rate and yield of two tomato varieties un-
der green manure and NPK fertilizer rate Samaru
Northern Guinea Savanna

The research [10] involved a treatment with two tomato varieties (Roma VF
and UC82B), four rates of NPK 15-15-15 fertilizer (0, 150, 300, and 450 kg
ha1), and three rates of green manure (0, 5, and 10 t ha1), using a split-plot
design with three replications. Both varieties showed linear growth responses
in plant height, relative growth rate, and crop growth rate (CGR) at 5 and 7
weeks after transplanting. UC82B outperformed Roma VF in terms of CGR at
5–7 weeks, net assimilation rate (NAR) at 7–9 weeks, and total fruit yield, with
a 10.6% higher yield. NPK fertilizer application significantly enhanced plant
height, crop dry weight, CGR, and overall yield. Future research could explore
how NPK interacts with other controllable and uncontrollable vari

2.1.6 Application of Smart Techniques, Internet of Things
and Data Mining for Resource Use Efficient and Sus-
tainable Crop Production

Technological advancements have increased the use of the Internet of Things
(IoT) to enhance resource efficiency, productivity, and cost-effectiveness in agri-
culture, especially amid climate change. With the rising global population,
climate variations, and growing food demand, this paper reviews modern IoT
and smart techniques for sustainable crop production.IoT aids farmers not only
in smart crop cultivation but also in post-harvesting and managing consumer
deals. It contributes to precision farming through technologies like agricultural
drones, remote sensing, smart greenhouses, smart livestock management, com-
puter imaging, and climate monitoring. Data mining and simulation modeling
for crops and environmental management are gaining attention, with new algo-
rithms being developed for better decision-making. These techniques are used
for fertilizer application timing and rates, disease and yield predictions, soil
moisture detection, and irrigation scheduling.The study aims to summarize the
latest applications of smart techniques, including yield estimation, irrigation
and fertilizer management, and pest and disease monitoring and management
in crop production under changing climates.[1] reported symptoms such as bud
drop, abnormal flower development, poor pollen production, dehiscence, and
yield losses in tomatoes due to increased temperature.The paper highlights var-
ious IoT applications but does not address the integration of these technologies
into a cohesive, scalable system for broader agricultural use.The paper does not
sufficiently explore how these technologies can be adapted to local conditions
and specific crop needs, particularly in developing regions.
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2.2 Discussion of similar projects or systems

V.Mamatha et al 2023 [16] which is the base paper of the research used the k-
NN for prediction of growth rate of the leafy vegetables. The model showed an
accuracy of 93% in hydroponics . However its applicability to a different context
was yet to be researched. The model was tailor-made for leafy vegetables only
and research was encouraged to be done on fruits. The short comings of this
base paper were addressed in the current research.

This paper [28] proposes a framework for predicting the absolute crop growth
rate (CGR) in hydroponic tomato crops using machine learning. Key input
variables include electric conductivity (EC) limits, nutrient solution (NS), ion
concentration uptake, and the dry weight of the fruits. The study examines the
correlations between these variables and the absolute CGR. It highlights the
impact of nutrient ion uptake (Na, K, Mg, N, and Ca) on growth. This paper
paid attention to controllable as in the current research. However,the research
did not include the NPK which are the nutrients needed to foster tomato growth.

2.3 Identification of gaps or areas for improve-
ment

k-NN was shown to be accurate on hydroponics farming of leafy vegetables and
the efficiency depends on the k-NN as well as hydroponic technique. There
is an opportunity to test the efficiency of k-NN on fruits and other farming
techniques. The researchers proposed further exploration of the CROPGRO-
Tomato model’s application, particularly in forecasting growth and fruit yield
of indeterminate tomato varieties, especially relevant for greenhouse cultivation.
This entails examining additional cultivars with indeterminate growth patterns
and considering other input parameters. It is important to map the relationship
between yield and height and if experimental evidence show that height can be
used a metric for tomato growth.NPK was never investigated against control-
lable inputs. Modern day farmers relied on assumed knowledge of the optimal
values of NPK needed for optimal tomato growth however the current research
provides experiment-backed knowledge to provide farmers with insights to foster
growth.
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2.4 Conclusion

So therefore, we have seen researches in prediction of tomato growth rate using
dry weight, leaf are index, fruiting and flowering and other metrics for measuring
growth rate incorporating imagine classifications, training of Ml learning models
using regression algorithms as well as classifiers. K- was used for prediction
of growth rate in hydroponics for leafy vegetables, it is also very popular for
prediction of tomato crop yield, disease detection, future crop prediction and
other areas pertaining to Agriculture. However, the researcher intends to use the
k-NN algorithm in predicting the growth of the tomato plant using height and
fruit number recorded over a specific period of time as metrics for measurement
of crop growth, against input variables that affect crop growth which include
the soil moisture, NPK, soil moisture and temperature in a greenhouse setup.
The research will also include a smart way of monitoring the NPK fertilizer
application for optimum growth and in turn higher yields.
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Chapter 3

Methodology

3.1 k-NN - existing algorithm explanation

The k-NN model is a non-parametric model i.e., no-one assumes the distribution
of the data [12]. It can be used for classification or regression. This research
uses k-NN as a regressor. [18] mentions that k-NN algorithm uses distance
metric techniques to identify the similarities and dissimilarities between the
data points.The similarity between the data points increases with a decrease
in the distance between them. The k-NN algorithm stores the training data
and then uses these data instances to predict the test data. From the training
dataset, k nearest neighbors are determined, for every new test data point.
Cross validation can be used for choosing the value of k [20]. The study will
employ cross-validation methods, such as k-fold cross-validation, to evaluate
how the model performs across various values of k. This methodology entails
partitioning the dataset into k subsets and sequentially training and testing the
model on different permutations of these subsets. After which,metrics (e.g.,
accuracy, mean squared error) to measure performance for each k value will be
measured and select the one that provides the best overall performance. It is
envisioned in this study that data from the green house will be collected over
three months, subdivided into folds, and used for the cross-validation of the
model, then the outputs will be averaged for improved model performance.

3.2 Tomato Plant Growing in Greenhouses

The tomato crop belongs to the Solanaceae family of crops, and is widely grown
worldwide [17]. Total Farm Solutions use a 5 x 6m greenhouse to grow a variety
of tomato crops including the determinate tomato which has been selected as
a point of focus for this research. The determinate tomato crop grows to an
affine height then produces flowers and gives off fruit, all in a small period of
time [14].
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Figure 3.1: Total Farm Solutions’ 5 x 6m case study greenhouse for the research

3.3 Problem Formulation

To identify the k nearest neighbors, the Euclidean distance is typically utilized,
which measures the Cartesian distance between two points in a plane. This
widely adopted metric calculates the distance between two data points. For
Euclidean distance Φ illustrated in the diagram the following can be concluded
that Eq. 1 holds,

φ(u, v) = ((ui − uj)
2 + (vi − vj)

2)
1
2 (3.1)

Figure 3.2: The Euclidean distance illustration between two magnified points
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3.3.1 The pseudo code for the model

Start

Load training data ( ).

Load validation data ( ).

Normalize the loaded data in (1 – 2).

Compute distances ( ), between test points and training points

Sort results obtained from the above step in ascending order

Set the appropriate value of k

Predict the plant rate growth rate ( ).

End

3.3.2 The Improvement/modification to the k-NN model
for plant growth rate prediction

In this study the model is used for regression which is generally represented by
the regression expression in machine learning.

f(x, k) =

D∑
d=1

kdfd(x) (3.2)

With loss function:

L(f, k) =
1

P

p∑
p=1

(ŷ − f(xp, k))
2 (3.3)

It is considered to improve the performance of the model by using the Fuzzy
theory approach[14]. The research [14] illustrated that in the conventional ap-
proach an element belongs or does not belong to a set, here the element belongs
to a set by a discrete degree, i.e., for a set X = Xi|i=1,2....P The element x1 can
belong to a set by an m degree e.g., 0 → 1. The research will employ a fuzzy
K-Nearest Neighbors (Fk-NN) regression model. Unlike the traditional k-NN
algorithm, Fk-NN applies an unbiased weighting system in its decision-making
process, taking into account the distances between the test sample and its clos-
est neighbors. The classification of a new sample X in a class i, represented
by its k nearest neighbors, is determined by calculating its membership degree.
This method seeks to improve prediction accuracy by integrating fuzzy logic
into the k-NN structure..[15]. The membership degree of a new sample X in
class i, determined by the k nearest neighbors, is calculated as follows:

ui(y) =

∑k
j=1 uij(1/|X −Xj |)2/q−1∑k

j=1(1/|X −Xj |)2/q−1
(3.4)

The parameter q in the fuzzy strength equation regulates the Euclidean dis-
tance (|X−Xj |)2 between X and Xj , determining the influence of each nearest
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neighbor on the membership value. Here, uij represents the membership of the
sample Xj from the training data to class i among the k-nearest neighbors. This
is projected to produce a high-performance algorithm which gives more accurate
predictions at a slight expense of the compute power and time. To counter this,
the researcher proposes that the data will be set into batches compatible with
the Zimbabwe Centre for High Performance Computing (ZCHPC)’s computing
resource of 16 GB from 12 cores on a single compute node. Depending on the
data sizes, multiple nodes may be applied to run the model. This way, the
algorithm will remain robust to new farm data and the outputs will have high
accuracy and usability to the farmer.

Figure 3.3: Proposed system development methodology
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3.4 Dataset

This research uses an existing dataset to build the k-NN model, and collects a
new data set to test its applicability to Zimbabwean tomato crops. The exisiting
data set is shown below:

Figure 3.4: Kaggle Data Set for Model Training

3.5 Experimental Setup

The sensors will be placed in the green house in proximity to the tomato plant.
Calibration will be performed before the deployment of the sensors. Height of
the tomato crop will be monitored periodically until the peak height at which
fruits will be obtained. Levels of the NPK, pH, moisture, temperature, and
humidity will be profiled against this measurement, moreover a control crop
will be used to compare the monitored crop and the conventionally grown crop.
The illustration of the experimental setup is given below:
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Figure 3.5: The proposed experimental setup in the green house

3.6 Evaluation

The dataset used will be split into training and test data, to establish the
accuracy of the model. The efficacy of the algorithm will also be measured by the
F1 score. Moreover, the algorithm will be validated using the data collected from
the experimental unit Fig. 3.5 over three months from Total Farm Solutions’
greenhouse, projected to be from beginning of February – end of May 2024. The
predictions of the algorithm will be measured against the actual collected data
from the greenhouse. The algorithm will also be compared to other published
works which used other methods to perform crop growth rate predictions or
condition monitoring of greenhouses/farms. Particular focus will be given to
comparison of the % accuracy level to that of [24]who achieved average efficacy
of 93.75% on feature recognition of crops towards precision farming.

3.6.1 Data Handling and Feature Engineering

Data pre-processing for k-NN Model
Before training the k-NN model, it was crucial to pre-process the data to ensure
that it was clean, standardized, and suitable for modeling. This pre-processing
involved several steps, each aimed at addressing potential issues that could
impact the model’s performance. Here’s an overview of the pre-processing steps
undertaken by the researcher :
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• Data Collection and Integration

The researcher combined data from various sources, ensuring that all relevant
features—such as nitrogen , phosphorus , potassium , temperature, humidity,
soil moisture, number of fruits, and plant height—were included in a single
dataset. The researcher made use of two datasets for training and used the
Zimbabwean data set for validation.

• Handling Missing Values

Checked for missing values in the dataset and applied appropriate strategies to
handle missing data.

• Data Normalization

Normalized the feature variables to ensure that they were on a similar scale.
This was particularly important for the k-NN algorithm, which relies on distance
calculations.Used Min-Max scaling to transform the data, bringing all feature
values into the range [0, 1]. This helped prevent features with larger ranges
from dominating the distance metric.

• Feature Engineering

Developed new features and adjusted existing ones to improve the model’s pre-
dictive accuracy. For instance, combined temperature and humidity into a single
feature to represent overall environmental conditions. Also applied polynomial
feature expansion to account for non-linear relationships between the features
and the target variables.

• Outlier Detection and Removal

Identified outliers in the dataset that could skew the model’s performance.

• Data Splitting

Divided the pre-processed dataset into training and testing sets. This approach
helped in assessing the model’s performance on new data and ensures that the
model does not over-fit.

• Ensuring Consistency

Verified that all pre-processing steps were applied consistently across the entire
dataset, ensuring no data leakage from the training set to the test set.

By meticulously following these pre-processing steps, the researcher ensured
that the data fed into the k-NN model was clean, well-scaled, and representative
of the real-world scenario. This pre-processing laid the foundation for accurate
and reliable model predictions, ultimately contributing to the success of our
research in optimizing tomato plant growth.
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3.6.2 Optimization for Fertilizer Recommendations in Tomato
Growth

• Define the Parameter Space for Random Search

Specify the ranges or distributions for n-neighbors, weights, and metric that
you want to explore. This involves setting up the space in which the Random
Search will look for the optimal hyper-parameters.

• Set Up and Run Random Search

Use Randomized Search CV to perform Random Search over the defined param-
eter space. This step involves setting up the search algorithm with the number
of iterations, cross-validation splits, and other settings. Fit the Random Search
model on the data to find the best hyper-parameters.

• Predict Using Optimized NPK Values

Use the optimal hyper-parameters found by Random Search to make predictions
with the trained KNN model. This step involves applying these parameters to
the model to get the predicted outputs.

• Evaluate and Compare Results

Assess the predictions made using the optimized NPK values against the actual
data.

• Analyze the Impact of Optimization

Analyze the impact of the optimized NPK values on the predicted growth,
comparing it to the initial predictions and actual growth data.
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3.7 Conclusion

In this methodology chapter, we have detailed the experimental approach em-
ployed to develop a k-NN model for predicting the growth rate of the tomato
plant . The experimental methodology provided a comprehensive framework
for developing a robust predictive model. By systematically integrating various
environmental and growth-related variables, we aimed to create a model that
offers accurate and actionable insights for optimizing tomato plant growth. This
methodological approach not only ensures the reliability of predictions but also
supports the practical application of our findings in the Zimbabwean context.In
summary, our experimental methodology has laid a solid foundation for the
development of the k-NN based predictive model as well as the validation, con-
tributing significantly to the field of precision agriculture and providing valuable
tools for enhancing crop yield and resource management.
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Chapter 4

Analysis and Design

4.1 Introduction

The tomato growth prediction model using k-NN algorithm is deployed onto
sensor hardware including, pH, moisture, and NPK sensors controlled by an
Arduino micro-controller for a web-based platform which retains the results.
The chapter discusses the steps involved in building the model including the
domain and user requirements, system components and design, and technique
of implementation, feature selection, model training, and evaluation.

4.2 Detailed analysis of the problem domain and
user requirements

Most modern day farmers assume the ideal conditions for growth rate of the
tomato plant based on generational knowledge.Whilst this generational knowl-
edge is valuable in many cases, in a complex multi-dimensional system, a data-
based approach can provide values that are more custom to particular scenarios.
There is need for a model that provides data-driven insights to foster the growth
of the tomato plant.During the exploration of machine learning to produce a
growth prediction model, the researcher mostly struggled with finding suitable
training data from the local pool. Data on tomato plants carrying parame-
ters such as temperature, humidity, pH, soil conditions, historical yields, and
tomato crop types proved challenging to come-by especially for the Zimbabwean
context. The researcher therefore resorted to collecting own data and mixing it
with other data from sources available online to create usable datasets for model
training. From this data, select features were then specified for the model and
used in training the k-NN algorithm used in the study. The model was validated
and balanced out to avoid over fitting and underfitting.
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4.2.1 Functional Requirements

User Interface

1. Develop a user-friendly interface for inputting data and displaying predic-
tions and recommendations.

2. Allow users to adjust input variables and immediately see the predicted
outcomes and optimized recommendations.

Prediction and Optimization

1. Provide real-time predictions of tomato plant growth based on current
input variables.

2. Offer optimization recommendations for NPK fertilizer application and
irrigation schedules to maximize yield.

• Training pipeline requirements

Data Collection

1. Collect data on tomato plant growth metrics, including plant height and
fruit number, over specific time intervals.

2. Gather data on input variables such as soil moisture, NPK levels, electrical
conductivity (EC), pH, and soil temperature within a greenhouse setup.

Data pre-processing

1. The collected data is cleaned and normalized to ensure accuracy and con-
sistency.

2. Missing values are addressed, and relevant variables impacting tomato
growth are identified through feature selection.

Model Training

1. Implement the K-Nearest Neighbors (k-NN) algorithm to train the pre-
dictive model using the pre-processed data.

2. Optimize the number of neighbors (k) and select appropriate distance
metrics to enhance model accuracy.

3. Train the Fuzzy K-Nearest Neighbors (Fk-NN) model to incorporate an
unbiased weighting scheme.

Model Evaluation

1. Evaluate the model’s performance using metrics such as MSE and RMS
values.

2. Apply cross-validation techniques to validate the model and prevent over-
fitting.
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4.2.2 Non-functional Requirements

Performance: The system must provide predictions and recommendations
within a reasonable time frame with the model should handling large datasets
efficiently without significant performance degradation.
Accuracy: The predictive model should achieve MSE and RMS values within
acceptable ranges, ensuring reliable predictions.
Scalability Developed system should be scalable to accommodate increasing
data volumes and the addition of new variables or features in the future.
Usability: The user interface should be easy to use and interact with, requiring
minimal training for users.Documentation and help features should be provided
to assist users in understanding and utilizing the system.
Reliability: The system should be reliable and available with minimal down-
time, ensuring continuous data collection and prediction capabilities.
Maintainability: The system should be designed for easy maintenance, with
well-documented code and modular components that can be updated or replaced
without affecting overall functionality.
Compatibility: The system should be compatible with various data input
sources and formats to facilitate seamless data integration.The system should
be designed to integrate with other agricultural management tools and plat-
forms for comprehensive farm management.

4.3 Identification of system components and func-
tionalities

The system includes input devices/sensors which include, pH sensor, humidity
sensor, infra-red temperature sensor, and the nitrogen, phosphorus and potas-
sium sensor which captures the input data for the system. The system then
feeds this input into an Arduino Uno micro controller which would be hosting
the k-NN model for processing. The output is then relayed to the server, and
to a GSM for broadcasting to the farmers mobile device or remote device. The
system offers suggestions and insights on the measured condition of the farm.
Insights such as highlighting when it is time for addition of inputs, or boosting
of the N, P, K levels.
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4.3.1 Use Case Diagram

Figure 4.1: Use Case Diagram
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4.3.2 Sequence Diagram

Figure 4.2: Sequence Diagram
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4.4 System architecture and design considera-
tions

The high-level system architecture for the k-NN tomato prediction system was
designed using a modular and scalable approach. The system design involved
data collection and pre-processing where real green-house data was collected by
the researcher and prepared for use together with online based data, the interface
design followed which interacted with external data sources such as the soil data,
and historical tomato yield data. Data was then collected and pre-processed to
make it suitable for input into the k-NN algorithm. The algorithm was then
made to give prediction for the yields and growth-rate. The algorithm finds the
K nearest neighbours to a new data point and assigns the majority class label
to the new data point. A prediction output is received and the predicted yield
from the k-NN Algorithm component is displayed to the user, and it is also
stored in the database for further analysis. The researcher also considered the
re-usability of the data collected from the system especially, as it slowly builds
into a dataset for the Zimbabwean landscape. The system also uses a simple
design with locally available components for ease of maintenance of the system.

4.4.1 Context Diagram and DFD Diagram

Figure 4.3: Context Diagram
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Figure 4.4: Data Flow Diagram
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4.4.2 Architectural Design

Figure 4.5: Architectural Design
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4.4.3 Physical Design

Figure 4.6: Physical Design
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4.4.4 Database Design

Figure 4.7: ERD

44



4.5 Interface design

4.5.1 Menu Design

Figure 4.8: Main Menu

4.5.2 Input Design

Figure 4.9: Inputs
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4.5.3 Output Design

Figure 4.10: Outputs

4.5.4 User Interface Overview

• Loading the Web Application :

The user starts by loading the web-based application on their device. Upon
loading, they are automatically directed to the main Dashboard.

• Automatic Data Collection:

The dashboard is continuously updated with data collected from various sensors
placed in the greenhouse. These sensors monitor critical parameters such as soil
moisture, temperature, humidity, and NPK levels. This data is automatically
inputted and displayed on the dashboard in real-time.

• Predicting Fruit Number and Plant Height:

There is a ”Predict Fruit Number” button on the dashboard. When the user
clicks this button, the application processes the real-time data from the sensors
and predicts the expected number of fruits and the plant height. This prediction
is based on the current growth conditions and the historical data patterns.

• Optimizing Growth Conditions:

Another key feature on the dashboard is the ”Optimize Conditions” button.
When this button is clicked, the application analyzes the real-time sensor data
and recommends the best fertilizer to use. This recommendation is based on the
current percentages of NPK in the soil. The goal is to optimize these nutrient
levels to foster optimal plant growth.

• Refreshing Greenhouse Data:

The dashboard also includes a ”Refresh Greenhouse Data” button. Clicking
this button ensures that the data displayed on the dashboard is continuously
reset and updated with new readings from the sensors. This feature allows the
user to keep track of the latest changes and trends in the greenhouse conditions
in real-time.
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4.6 Conclusion

In this chapter, the researcher outlined how user requirements were translated
into a comprehensive software solution for predicting tomato growth using the
k-NN algorithm. The researcher demonstrated her ability to understand these
requirements and create a well-structured design that serves as a clear guide for
the implementation phase. By providing detailed descriptions of system compo-
nents and their functionalities, along with supporting diagrams, the researcher
effectively illustrated the system’s structure and relationships. This groundwork
ensures a smooth transition to implementation, paving the way for a robust and
functional predictive model.
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Chapter 5

Results

5.1 Introduction

The findings from this study are presented in this chapter, where the researcher
used K-Nearest Neighbors as a regression model to predict key growth metrics
of tomato plants which are height and fruit number. The analysis is based on
data collected from a tomato farm in Zimbabwe used for validation, focusing
on essential controllable inputs like nitrogen, phosphorus, potassium against
uncontrollable inputs: temperature, soil moisture, pH, and humidity. Addition-
ally, the model has been optimized to offer practical fertilizer recommendations
tailored to real-time NPK levels sensored and sent to the user interface. In this
chapter, the researcher will present how well the predictive model performed,
show the relationship between height and fruit number as growth metrics.

48



5.2 Presentation of Findings

5.2.1 Model Score by RMS Values

Parameters Score R2 Score:Z Model
{’algorithm’: ’auto’, ’leaf size’: 30, ’metric’:
’minkowski’, ’metric params’: None, ’n jobs’:
None, ’n neighbors’: 7, ’p’: 2, ’weights’: ’uni-
form’}

0.919497 0.919497 0.919497 k-NN regression model.pkl

Table 5.1: k-NN Regression Model Results for Fruit Number Prediction

Parameters Score R2 Score:Z Model
{’algorithm’: ’auto’, ’leaf size’: 30, ’metric’:
’minkowski’, ’metric params’: None, ’n jobs’:
None, ’n neighbors’: 5, ’p’: 2, ’weights’: ’dis-
tance’}

0.84978 0.84978 0.84978 k-NN regression model.pkl

Table 5.2: k-NN Regression Model Results for Height Prediction

5.2.2 Fruit Number Prediction

• Parameters:

– Algorithm: auto

∗ Automatically selects the appropriate algorithm for computing
nearest neighbors based on the input data.

– Leaf Size: 30

∗ The leaf size affects the speed of the construction and query of
the KDTree and BallTree data structures.

– Metric: minkowski

∗ A generalization of Euclidean and Manhattan distances. When
p = 2, it becomes the Euclidean distance.

– Metric Parameters: None

– Number of Jobs: None

∗ Uses the default number of parallel jobs, which is typically 1.

– Number of Neighbors: 7

∗ Considers the 7 nearest neighbors to make predictions.

– p: 2

∗ Uses Euclidean distance (Minkowski distance with p = 2).
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– Weights: uniform

∗ All neighbors are weighted equally when making predictions.

• Performance Metrics:

– Score: 0.9194967788796279

– R2 Value: 0.9194967788796279

– Score:Z: 0.9194967788796279

• Model File: k-NN regression model.pkl

5.2.3 Height Prediction

• Parameters:

– Algorithm: auto

∗ Automatically selects the appropriate algorithm for computing
nearest neighbors based on the input data.

– Leaf Size: 30

∗ The leaf size affects the speed of the construction and query of
the KDTree and BallTree data structures.

– Metric: minkowski

∗ A generalization of Euclidean and Manhattan distances. When
p = 2, it becomes the Euclidean distance.

– Metric Parameters: None

– Number of Jobs: None

∗ Uses the default number of parallel jobs, which is typically 1.

– Number of Neighbors: 5

∗ Considers the 5 nearest neighbors to make predictions.

– p: 2

∗ Uses Euclidean distance (Minkowski distance with p = 2).

– Weights: distance

∗ Neighbors closer to the query point are weighted more heavily in
making predictions.

• Performance Metrics:

– Score: 0.8497795584657768

– R2 Value: 0.8497795584657768

– Score:Z: 0.8497795584657768

• Model File: k-NN regression model.pkl
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Euclidean Distance Formula

In this research, the Euclidean distance is used to measure the distance between
points in the feature space. The formula for Euclidean distance is:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

where x and y are two points in n-dimensional space, and xi and yi are the
coordinates of these points.

5.2.4 Graphical Comparison

Figure 5.1: Comparison of RMS values

5.2.5 Model Score by MSE Values

Prediction Type Parameters Mean Squared Error Model
Height Prediction {’nneighbors′ : 5} 0.222324 k-NN regression modelnumbers.pkl
Fruit Number Prediction {’nneighbors′ : 5} 0.157461 k-NN regression modelnumbers.pkl

Table 5.3: Combined Model Results (MSE)
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Prediction Type: Height Prediction

• Parameters:

– Number of Neighbors: 5

• Performance Metrics:

– Mean Squared Error: 0.222324

• Model File: k-NN regression modelnumbers.pkl

Prediction Type: Fruit Number Prediction

• Parameters:

– Number of Neighbors: 5

• Performance Metrics:

– Mean Squared Error: 0.157461

• Model File: k-NN regression modelnumbers.pkl

5.2.6 Graphical Comparison

Figure 5.2: Comparison of MSE values
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5.2.7 Relationship Between Fruit Number and Height

Figure 5.3: Number of Fruits and Height Relationship

The graph compares the effectiveness of three regression models—linear,
quadratic, and logarithmic in predicting the number of fruits based on the av-
erage height of plants.
Linear Regression (green line): Despite the simplicity of the model, it achieved
the best R² value, indicating that it explains the highest proportion of variance
in the number of fruits relative to the height. This suggests a strong linear
relationship between plant height and fruit number.
Quadratic Regression (red line): While it captures some non-linear patterns in
the data, it does not perform as well as the linear regression in terms of R²
value.
Logarithmic Regression (orange line): This model is less accurate compared to
the other two, indicating that a logarithmic relationship is not as suitable for
this data set.
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5.2.8 Optimization Results

cccc
Metric Before Optimization After Optimization Improvement (%)

Average Nitrogen 45.98 52.34 13.84
Average Phosphorus 16.23 18.56 14.36
Average Potassium 59.67 64.39 4.72

Average Fruit Number 33.78 38.12 12.86

Table 5.4: Summary of Average values of NPK and number of fruits Before and
After Optimization

Optimizing NPK values using this model leads to improved tomato growth
by providing tailored fertilizer recommendations. This increases tomato growth
and there by increasing yields.

5.3 Conclusion

In this chapter, the researcher presented the findings from the study on predict-
ing tomato growth using k-NN as a regressor. The results show how well these
models can predict important growth metrics like plant height and fruit number
based on factors such as NPK,soil moisture and humidity. The research also
included practical fertilizer recommendations based on NPK readings. These
findings confirm that our models are effective and can be useful in real-world
farming to improve tomato growth and optimize agricultural practices.
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Chapter 6

Discussion

6.1 Introduction

The results from the study on predicting tomato growth using k-NN are dis-
cussed in depth.. The above chapter looked at important growth metrics like
plant height and fruit number, and also explored how optimizing fertilizer rec-
ommendations based on real-time NPK readings could improve outcomes. These
findings will be interpreted , compared to what’s already known in the litera-
ture, and considered for their practical implications for farming. Additionally,
the researcher will discuss the limitations she faced during the study and suggest
areas for future research. This discussion will help understand how effective and
useful the predictive model and optimization techniques are in the context of
agricultural science.

6.2 Summary of Findings

As shown in 5.3 , the linear regression model showed the best R2 value, meaning
it provides the best fit to the data among the three models tested. This suggests
a strong linear relationship between the average height of tomato plants and the
number of fruits produced. Given the linear model’s superior fit, it can be in-
ferred that for the range of heights studied, the number of fruits produced by
tomato plants increases proportionally with plant height. This linear relation-
ship is useful for predicting tomato yield based on plant height in practical agri-
cultural settings because plant height can be much easier to measure than fruit
number. Its important to note that while the quadratic and logarithmic models
provide alternative perspectives on the relationship, their lower R² values indi-
cate they are less effective at capturing the overall trend in the data compared
to the linear model. The K-Nearest Neighbors (k-NN) algorithm is well-suited
for agricultural data due to its flexibility, simplicity and non-parametric na-
ture which allows it to handle complex, non-linear relationships. By leveraging
optimization techniques like the random search technique implemented in this
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research, the k-NN model was fine-tuned to provide precise fertilizer recom-
mendations, optimizing the combination of NPK to maximize crop growth.This
optimization process enhances the practical utility of the predictive model for
farmers by improving accuracy, efficiency and relevance to local conditions. As
a result, farmers receive tailored recommendations that increase yields,This ap-
proach serves as a valuable decision support tool, empowering farmers with
data-driven insights to make informed agricultural decisions instead of relying
on assumed knowledge to foster growth.

6.3 Model evaluation and analysis

The graph in 5.1 indicates how accurately the k-NN regression model’s predic-
tions match the observed data.

The below equation was useful in the context of this research as used in prior
researches [9] which implemented k-nn as a regressor:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(6.1)

• Fruit Number Prediction:

• r2 Value: 0.9194967788796279

• Approximately 91.95% of the variance in the number of fruits is explained
by the model. This indicates an even stronger correlation between the
model’s predictions and the actual number of fruits.

• Height Prediction:

• r2Value: 0.8497795583657768

• Approximately 84.98% of the variance in the height of tomato plants is
explained by the model. This shows a strong correlation between the
model’s predictions and the actual heights.

The graph in 5.2 illustrates the disparity between the predicted and actual
values, providing insight into how closely the predictions of the model align
with the actual data. The below equation was useful in the context of this
research:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (6.2)

• Height Prediction:

• MSE: 0.222323915191869
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• The model’s predictions for height have an average squared error of ap-
proximately 0.22. This value indicates the average deviation between the
predicted and actual heights of tomato plants.

• Fruit Number Prediction:

• MSE: 0.157460769440734

• The model’s predictions for the number of fruits have an average squared
error of approximately 0.16. This value indicates the average deviation
between the predicted and actual number of fruits.

The MSE scored the model lower than the RMS due to the presence of outliers
in the data. The quadratic nature of MSE amplifies the impact of these outliers,
resulting in a higher error metric.

6.3.1 Analysis of Random Search Optimization

— Detailed Discussion

• Average Nitrogen

Before Optimization: The average nitrogen level in the dataset before optimiza-
tion was 45.98.
After Optimization:After applying Random Search optimization, the average
nitrogen level increased to an average 52.34.
Average Improvement (%): This represents roughly a 13.84% increase. Higher
nitrogen levels are generally associated with better vegetative growth in tomatoes[18],
which contributes to an increase in fruit production.

• Average Phosphorus

Before Optimization: The average phosphorus level before optimization was
16.23.
After Optimization: Post-optimization, the average phosphorus level rose to
18.56.
Average Improvement (%): This constitutes a 14.36% increase. Phosphorus is
critical for root development and fruit setting in tomatoes, explaining its impact
on fruit yield.

• Average Potassium

Before Optimization: The average potassium level was 59.67 before optimiza-
tion.
After Optimization: Following optimization, the average potassium level slightly
increased to 64.39.
Improvement (%): There is a 4.72% increase, potassium is essential for fruit
quality and disease resistance.
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• Average Fruit Number

Before Optimization: Initially, the average number of fruits produced was 33.78.
After Optimization: The optimization process increased the average fruit num-
ber to 38.12.
Improvement (%): This improvement of 12.86% in fruit number highlights the
efficacy of the optimization process. By fine-tuning the NPK values, the model
could better predict the optimal conditions for maximizing fruit production.

6.4 Theoretical Implications

The researcher will highlight the relevance and impact of using k-NN for predict-
ing tomato growth within the context of agricultural research giving emphasis
to its adaptability, practicality and support for sustainable practices:

• Enhanced Predictive Accuracy with k-NN

The findings from the current research provides evidence that the k-NN regres-
sor accurately predicts key tomato growth metrics which are fruit number and
plant height. The high values of rs and MSE scores observed in the models
indicate that k-NN can effectively capture the complex relationships between
environmental variables and tomato growth outcomes.[19] supports the above
notion.This enhances the predictive capabilities within the agricultural domain
particularly for tomato cultivation which allows for more precise yield forecasts.

• Importance of Locality in Agricultural Predictions

The emphasis on locality and proximity in k-NN aligns well with agricultural
practices.[26] found that in tomato cultivation particularly, local conditions such
as micro-climates and soil patches significantly impact plant development. k-
NN’s reliance on local data points for prediction reflects this agricultural princi-
ple, suggesting that nearby conditions provide the most relevant information for
predicting growth outcomes. This theoretical implication supports the practical
use of k-NN in localized agricultural settings.

• Sensitivity to Feature Scaling

The research highlights the importance of proper feature scaling when using
k-NN. Since k-NN calculates distances between data points, the scale of each
feature can significantly affect the predictions. Normalizing or standardizing nu-
trient levels and environmental factors ensures that no single feature dispropor-
tionately influences the model’s output. This reinforces the need for meticulous
data pre-processing in agricultural research using k-NN.

• Practical Applications in Precision Agriculture

The findings suggest that implementing k-NN in a user-friendly interface can
provide real-time predictive insights for farmers. By inputting current environ-
mental and soil data, farmers can receive accurate predictions on fruit yield
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and plant growth along with recommendations for optimal fertilizer use. This
practical application can lead to more informed decision-making, potentially
increasing productivity and resource efficiency in tomato farming. The integra-
tion of k-NN into precision agriculture practices supports the movement towards
data-driven farming, optimizing crop management at a granular level.

• Support for Sustainable Farming Practices

The ability of k-NN to provide accurate predictions and optimize growth con-
ditions aligns with sustainable farming objectives. By recommending precise
fertilizer amounts and predicting yield outcomes, the k-NN regressor helps min-
imize waste and environmental impact. This theoretical implication highlights
the role of machine learning in promoting sustainable agriculture, ensuring that
farming practices are both productive and environmentally responsible.

6.4.1 Emerging Frameworks and Models

• Hybrid Modeling Framework:

A hybrid model which uses linear regression to identify strong linear relation-
ships and k-NN to capture local variations and non-linearities providing a more
comprehensive predictive approach.

• Integrated Nutrient and Environmental Predictive Model:

This integrated model combines predictive analytics with agronomic expertise,
offering a holistic tool for optimizing crop yields based on a comprehensive set
of growth factors.

6.5 Practical Implications

6.5.1 Real-World Applications of Predictive Models in Agri-
culture

• Agricultural Decision Support Systems (DSS)

The predictive model developed in this study can be integrated into DSS used by
farmers and agronomists. These tools can help make informed decisions about
nutrient management against uncontrollable conditions. The model’s simplicity
and accuracy in predicting fruit numbers make these tools user-friendly and
reliable enabling farmers to optimize yields with minimal effort. Adapting this
model to various regions and crop varieties may necessitate additional data
collection and fine-tuning which presents logistical challenges.

• Precision Agriculture Platforms

The k-NN model can be utilized in precision agriculture platforms to pro-
vide real-time predictions and recommendations based on current environmen-
tal and soil conditions, using sensor data to continuously update and inform
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decisions.This model is well-suited for handling large datasets with multiple
variables enhancing the precision and accuracy of agricultural practices.It is im-
portant to note that integrating these models requires robust data infrastructure
and real-time processing capabilities, which can be resource-intensive.

• Farm Management Software

The model can be integrated into farm management software to help farmers
plan and manage resources more effectively such as predicting growth rates
and yields to optimize harvesting schedules and market supply.This integration
can improve resource efficiency, reduce waste, and enhance financial planning for
farmers.However, variability in farming conditions and practices may necessitate
frequent updates and customization of the models, which can be time-consuming
and costly.

• Research and Development

Research institutions can build on these findings to further explore the relation-
ships between growth factors and crop yield. They can develop more sophis-
ticated hybrid models that combine various predictive techniques.Continuous
improvement in predictive models can lead to more accurate and reliable agri-
cultural practices fostering innovation in the agricultural field.Ongoing funding
and collaboration between agronomists, data scientists and software engineers
are necessary for sustained research and development which can pose as a chal-
lenge.

6.5.2 Potential Benefits

1. Increased Yield and Efficiency: By applying these predictive models, farm-
ers can optimize resource use, leading to higher yields and more efficient
operations.

2. Cost Reduction: Accurate predictions help minimize resource wastage,
reducing the overall cost of inputs like fertilizers and water.

3. Improved Sustainability: Optimized use of inputs based on predictive
models can lead to more sustainable farming practices, reducing envi-
ronmental impact.

6.5.3 Limitations and Challenges

1. Data Quality and Availability: The accuracy of the models depends heav-
ily on data quality and availability. Inconsistent or incomplete data can
lead to inaccurate predictions.

2. Adaptability to Diverse Conditions: Models trained on specific datasets
might not perform well in different environmental conditions or with dif-
ferent crop varieties. Ensuring the models’ generalizability is challenging.
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3. Resource Requirements: Implementing real-time predictive models re-
quires significant computational resources and infrastructure, which can
be problematic for small-scale farmers.

4. User Training and Acceptance: Farmers and agricultural stakeholders
need training to use these models effectively and interpret their predictions
correctly. Resistance to adopting new technologies can be a problem.

6.6 Validation and Reliability

6.6.1 Steps to Ensure Rigor and Trustworthiness

• Data Collection and pre-processing

The researcher gathered comprehensive data from reliable sources, covering key
variables like nitrogen, phosphorus, potassium, temperature, soil moisture, pH,
and humidity. She also collected data from a greenhouse in Zimbabwe so that
the model is generalized to the Zimbabwean context. Including these diverse
factors enhances the study’s content validity by addressing all major elements
known to influence tomato growth.

• Model Selection and Optimization

The researcher tested the model and optimized them through hyper-parameter
tuning.She used random search optimization technique to optimize these models
to ensure consistency and reliability in the findings.

• Cross-Validation and Testing

The researcher split the dataset into k parts (folds) and trained the model k
times, each time using k1 folds for training and the remaining fold for test-
ing. The researcher used k-Fold Cross-Validation with the below equation as
accordance to [26]

Cross− V alidationScore =
1

k

k∑
i=1

MSEfoldi
(6.3)

6.7 Limitations and Methodological Reflections

6.7.1 Limitations and Potential Weaknesses

• Research Design Limitations

1. Model Selection and Scope Although the researcher tested linear, quadratic,
logarithmic regression,the researcher mainly focused on these traditional
methods.This approach might have overlooked more advanced models like
neural networks and ensemble methods which could potentially offer bet-
ter predictive performance.
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2. Environmental Control The study was conducted in controlled environ-
mental conditions.These conditions might not fully capture the variability
and complexity of real-world farming environments, possibly affecting how
well the findings apply to broader more varied contexts.

6.7.2 Data Collection Methods

• Measurement Accuracy

There could be inaccuracies in measuring variables such as soil moisture, nu-
trient levels, and environmental conditions.Measurement errors can introduce
noise and bias into the data, affecting the reliability and accuracy of the models
and leading to less precise predictions and insights.

• Data Diversity and Representatives

The data mainly represents specific regions, growing conditions and tomato
cultivars.Limited diversity in the data can constrain the models’ ability to gen-
eralize to different regions, climates, or cultivars, reducing the applicability of
the findings in varied agricultural contexts.

• Sample Size Constraints

The limited sample size affected the robustness of the statistical analysis and
model training, potentially leading to over-fitting. Over-fitting occurs when
models perform exceptionally well on the training data but fail to generalize
to new, unseen data, reducing their reliability. Despite this challenge, using
a dataset from Zimbabwe helped to mitigate the risk by ensuring the model’s
applicability and relevance to local conditions, thereby enhancing its generaliz-
ability and reliability in the targeted agricultural context.

6.7.3 Implications for Generalizability and Applicability

1. Generalizability Due to controlled conditions and specific datasets, the
findings might not easily generalize to other crops, regions, or farming
practices.While the model shows promising results for tomato growth un-
der certain conditions, their effectiveness in different contexts remains
uncertain. Further research is needed to test and adapt the models for
broader applications.

2. Applicability in Real-World Scenarios Implementing these models
in real-world agricultural systems may face challenges such as data inte-
gration, real-time processing capabilities, and user acceptance.Although
the theoretical models are valuable, their real-world application requires
additional infrastructure, user training, and adaptation to specific farming
conditions and practices.
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3. Evolving ConditionsAgricultural conditions and practices evolve over
time, which might render static models less effective.Continuous updating
and validation of the models are necessary to maintain their relevance and
accuracy, posing an ongoing challenge for implementation.

6.8 Conclusion

This chapter analyzed how well k-NN works for predicting tomato growth. The
results show that k-NN is effective at predicting important growth metrics mak-
ing it a useful and flexible tool for handling complex agricultural data. This
supports its role in precision farming where accurate predictions are crucial.The
findings challenge the idea that only non-linear models are best for biological
data[5]. Instead, k-NN, which does not rely on predefined assumptions proves to
be a good fit depending on the data and conditions. This flexibility makes k-NN
valuable for various agricultural applications.These results have practical impli-
cations, especially for improving tools like decision support systems, precision
farming platforms, and farm management software. Using k-NN models can help
increase yields, cut costs, and promote sustainability. However, issues like data
quality, model adaptability, and resource needs must be addressed for successful
implementation in the real world.The study was thorough, using detailed data
collection, strong model optimization, and cross-validation techniques. Still, it’s
important to note limitations like research design, data diversity, and sample
size, which impact how broadly the findings can be applied. More research and
model testing in different agricultural settings are needed.
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Chapter 7

Conclusion and Future work

7.1 Introduction

This final chapter provides a comprehensive summary of the study’s findings
and insights gained from predicting tomato growth using k-NN as a regres-
sor. It also discusses the practical implications of these findings, acknowledges
the limitations of the research and suggests areas for future work. The chap-
ter emphasizes the importance of continuous model evaluation and adaptation
in agricultural predictive modeling to ensure accuracy and relevance. Addi-
tionally, it outlines potential future research directions that could enhance the
generalizability and practical applicability of the models thereby fully realizing
its potential in diverse agricultural environments.

7.2 Summary of the Project

The aim of this research was to train and develop a k-NN model used for pre-
diction of tomato growth against controllable and uncontrollable inputs such as
nitrogen, phosphorus and potassium, temperature, humidity and soil moisture.
The model was deployed into a user friendly interface where farmers could ma-
nipulate the controllable inputs for improved tomato growth. The researcher
used Generic Algorithm Optimization technique to optimize conditions to pro-
vide farmer with fertilizer recommendations to foster tomato growth. The re-
search aimed to bridge the gap between assumed values for tomato growth and
data-driven insights for optimization of the tomato growth. The project in-
corporated an experimental methodology in which data was collected from a
Zimbabwean farm for validation so that it is applicable and generalized to a
Zimbabwean context.
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7.3 Key findings and contributions

• Effectiveness of k-NN Model

k-NN models demonstrated strong predictive capabilities for both plant height
and fruit number. The performance was particularly enhanced by optimiz-
ing weighting strategies, validating the versatility of k-NN in handling multi-
dimensional agricultural data.

• Critical Role of Growth Factors

The study confirmed the significant impact of key growth factors such as nitro-
gen, phosphorus, potassium , temperature, soil moisture, pH, and humidity on
tomato growth. This alignment with existing literature underscores the impor-
tance of these variables in predictive modeling.

• Fertilizer Optimization

The incorporation of fertilizer recommendations based on temperature,humidity
and soil moisture readings provided actionable insights for optimizing NPK
application, directly addressing the practical needs of farmers to enhance crop
yield and health.

7.4 Contributions to the Existing Body of Knowl-
edge

• Expanded Application of k-NN

The successful application of k-NN models in predicting growth metrics and
optimizing fertilizer recommendations extends the use of this algorithm beyond
traditional domains. This adds to the body of knowledge by showcasing k-NN’s
potential in agricultural and environmental sciences.

• Integrated Fertilizer Recommendation System

The novel integration of a fertilizer recommendation system based on real-time
NPK readings addresses a significant practical challenge in agriculture. This
innovation not only enhances predictive accuracy but also provides farmers with
direct, actionable recommendations to optimize nutrient application.

7.4.1 Addressing the Research Problem

• Predictive Modeling for Tomato Growth

The primary research question focused on developing and training a model using
the k-NN algorithm to predict tomato growth in a Zimbabwean context. The
project successfully addressed this by creating robust models that accurately
predict growth metrics based on critical environmental and nutrient factors.
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• User-Friendly Deployment

The deployment of the k-NN model to a user-friendly interface enables farmers
to manipulate controllable inputs and receive real-time predictions and recom-
mendations. This practical application ensures that the research outcomes are
directly beneficial to end-users.

• Optimization for Enhanced Growth

By applying optimization techniques to recommend optimal NPK values, the
project directly contributes to maximizing plant growth by using data-driven
insight and not just assumed or generational knowledge. This aligns with the
objective of providing farmers with useful information to enhance crop yield and
sustainability.

7.5 Evaluation of objectives

The k-NN model was successfully developed and trained using data relevant
to the Zimbabwean context, incorporating key growth factors such as nitrogen,
phosphorus, potassium , temperature, soil moisture and humidity. The model
demonstrated strong predictive capabilities for predicting plant height and fruit
number.The trained model was successfully deployed to a user-friendly inter-
face, allowing farmers to input and adjust controllable variables.This interface
provided real-time predictions and recommendations, enhancing the practical
applicability of the research. Generic Algorithm Optimization technique was
applied to the model to recommend optimal NPK values and in turn provid-
ing actionable insights for farmers to maximize tomato plant growth.The system
was designed to offer real-time fertilizer recommendations based on current NPK
readings, directly addressing the objective of enhancing crop yield.

7.5.1 Challenges and Mitigation Techniques

Challenge: The diversity and volume of data were constrained by available re-
sources, affecting the robustness of the model.
Mitigation: Additional data collection efforts were made, but future work should
focus on expanding data sources and increasing sample sizes.
Challenge:The controlled conditions under which the study was conducted may
not fully represent the variability of real-world farming environments.
Mitigation: Field trials were planned to validate the models in real-world set-
tings, ensuring practical applicability.
Challenge: Integrating the models into a seamless, user-friendly interface re-
quired significant technical development and testing.
Mitigation: Iterative design and user feedback were utilized to ensure the inter-
face met the needs of farmers, with plans for ongoing support and improvement.
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7.6 Reflection on the project process

7.6.1 Strengths of the Chosen Methodology, Tools, and
Techniques

The experimental methodology allowed for controlled manipulation of variables,
ensuring precise measurement of their impact on tomato growth. This control
is crucial for establishing clear cause-and-effect relationships.It facilitated the
systematic testing of different model parameters and configurations, enhancing
the reliability of the results and ensuring that the most effective models were
identified and optimized.

Utilizing Python and its powerful libraries, such as Scikit-learn for machine
learning, Pandas for data manipulation, and Matplotlib for visualization, pro-
vided a robust and efficient framework for data analysis and model develop-
ment.The deployment of the model to a user-friendly interface ensured practical
application of the research findings, making the technology accessible to farmers
and directly addressing their needs for real-time, actionable insights.

7.6.2 Weaknesses and Challenges

The controlled environment may not fully replicate the variability and com-
plexity of real-world agricultural conditions. This can limit the generalizability
of the findings to broader, more diverse contexts.The methodology’s focus on
precision may overlook broader ecological and environmental factors that also
influence tomato growth, potentially simplifying the complexity of agricultural
systems.

The reliance on specific software tools may present a barrier to adoption
among users unfamiliar with these technologies. Ensuring that the tools are
user-friendly and providing adequate training and support is essential. Weak-
ness: While the chosen models were effective, exploring a wider range of machine
learning techniques, such as deep learning or ensemble methods, could poten-
tially yield even better predictive performance.

7.6.3 Lessons Learned and Insights Gained

The study highlighted the need for diverse and comprehensive datasets to im-
prove model generalizability. Future projects should prioritize collecting data
from various regions, climates, and cultivars to ensure models are robust and
applicable across different contexts. The researcher learnt that investing in
broader data collection efforts early in the project can significantly enhance the
validity and applicability of the findings.
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Deploying the model to a user-friendly interface proved crucial for practical
application. Ensuring that the technology is accessible and intuitive for end-
users, such as farmers, is essential for the successful implementation of research
findings.It is important to Involve end-users in the design and testing phases
can provide valuable feedback and improve the usability and relevance of the
technology. Real-World Validation:

Incorporating real-time NPK readings for fertilizer recommendations signifi-
cantly enhanced the practical value of the project. Real-time data integration
can provide timely and actionable insights for farmers. Prioritizing real-time
data integration and ensuring the infrastructure to support it can greatly im-
prove the relevance and impact of predictive models in agriculture.

7.7 Future work and recommendations

• Mobile Application Development

Develop a mobile application that allows farmers to easily access the predictive
models and fertilizer recommendations in the field. A mobile app would make
the technology more accessible and practical, especially for farmers who may
not have access to desktop computers.

• Advanced User Interface Features

Implement advanced features such as interactive dashboards, real-time alerts
and visualization tools within the user interface.These features would enhance
user experience and provide farmers with more intuitive and actionable insights.

• Cloud-Based Data Storage and Processing

Use cloud-based infrastructure for data storage and processing to handle larger
datasets and support scalability.This would ensure that the system can accom-
modate increasing amounts of data and provide faster processing times.
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• Generalizing the optimization Problem

This can be done by incorporating additional variables, developing a dynamic
framework, addressing multiple objectives, and ensuring scalability and real-
time data integration. These advancements will enhance the model’s accuracy,
applicability, and sustainability, thereby significantly benefiting precision agri-
culture and crop management practices.

• Validation and Adaptation for Different Crops

Future work could involve validating and adapting the predictive models and
recommendations for various crops in soil-based farming, expanding the tech-
nology’s applicability and benefiting more farmers. Building on the project’s
findings and addressing its limitations, there are many opportunities for en-
hancements. Improvements could include developing a mobile application and
advanced user interface features to make the technology more accessible and
practical for farmers. Additionally, exploring advanced machine learning mod-
els, incorporating remote sensing data, and creating hybrid and time-series mod-
els could further improve predictive accuracy and robustness.

Further, extending the project to validate models for different crops, con-
ducting field trials, and evaluating economic and environmental impacts will
ensure the broader applicability and sustainability of the technology.It is ben-
eficial to re-run the k-NN model to foster the growth metrics of the following
week, and/or for the growth-rate. Customizing and localizing the model for
various agricultural contexts will also be crucial in making the technology uni-
versally beneficial. These future directions and enhancements will build upon
the current project’s findings and contribute to more effective and sustainable
agricultural practices.

69



Bibliography

[1] Awais Ali, Tajamul Hussain, Noramon Tantashutikun, Nurda Hussain, and
Giacomo Cocetta. Application of smart techniques, internet of things and
data mining for resource use efficient and sustainable crop production. Agri-
culture, 13(2):397, 2023.

[2] AA Alsadon, IM Al-Helal, AA Ibrahim, MR Shady, and WA Al-Selwey.
Growth analysis of tomato plants in controlled greenhouses. In XXX In-
ternational Horticultural Congress IHC2018: III International Symposium
on Innovation and New Technologies in Protected 1271, pages 177–184,
2018.

[3] Abdullah Alsadon, I. Al-Helal, Abdullah Derahim, M.R. Shady, and Wadei
Al-Selwey. Growth analysis of tomato plants in controlled greenhouses.
Acta Horticulturae, pages 177–184, 02 2020.

[4] Kenneth J Boote, Maria R Rybak, Johan MS Scholberg, and James W
Jones. Improving the cropgro-tomato model for predicting growth and
yield response to temperature. HortScience, 47(8):1038–1049, 2012.

[5] Leo Breiman. Statistical modeling: The two cultures. Statistical Science,
16(3):199–231, 2019.

[6] Oumnia Ennaji, Leonardus Vergutz, and Achraf El Allali. Machine learning
in nutrient management: A review. Artificial Intelligence in Agriculture,
2023.

[7] V Gurunathan, J Dhanasekar, S Suganya, et al. Plant leaf diseases detec-
tion using knn classifier. In 2023 9th International Conference on Advanced
Computing and Communication Systems (ICACCS), volume 1, pages 2157–
2162. IEEE, 2023.

[8] E Heuvelink and M Dorais. Crop growth and yield. In Tomatoes, pages
85–144. Cabi Publishing Wallingford UK, 2005.

[9] K Hossny, S Magdi, Abdelfattah Y Soliman, and Ahmad Hany Hossny. De-
tecting explosives by pgnaa using knn regressors and decision tree classifier:
A proof of concept. Progress in Nuclear Energy, 124:103332, 2020.

70



[10] AS Isah, EB Amans, EC Odion, AA Yusuf, et al. Growth rate and yield
of two tomato varieties (lycopersicon esculentum mill) under green ma-
nure and npk fertilizer rate samaru northern guinea savanna. International
Journal of Agronomy, 2014, 2014.

[11] HK Karthikeya, K Sudarshan, and Disha S Shetty. Prediction of agricul-
tural crops using knn algorithm. Int. J. Innov. Sci. Res. Technol, 5(5):1422–
1424, 2020.
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ten cultivars of determinate tomato (lycopersicum esculentum mill.), grown
under different climatic conditions. Acta Agriculturae Slovenica, 85(2):321–
328, 2005.

[18] Swathi Nayak, Manisha Bhat, NV Subba Reddy, and B Ashwath Rao.
Study of distance metrics on k-nearest neighbor algorithm for star cate-
gorization. In Journal of Physics: Conference Series, volume 2161, page
012004. IOP Publishing, 2022.
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